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The equations governing high-frequency oscillatory viscous flows are investi- 
gated through the separation of the steady and the unsteady parts. All Reynolds 
number ranges are studied and the orders of magnitude of the steady streaming 
produced by the Reynolds stresses are established. 

The oscillating circular cylinder at  low Reynolds numbers is studied through 
the method of inner and outer expansions. Steady recirculating cells exist near 
the cylinder. The results compare very well with experiments. Analytic expres- 
sions for the streamfunction and the drag coefficient are obtained. 

The oscillating flow towards an infinite plate is investigated in detail. The 
steady streaming is caused by the steady component of the Reynolds stress. The 
pressure gradient always causes reverse flow near the solid boundary. 

1. Introduction 
The striking result of the interaction of an oscillatory viscous flow with a solid 

boundary is the induction of a time-independent streaming motion. This induced 
steady streaming is generated by the non-linear Reynolds stresses in the unsteady 
boundary layer. 

The first experiment and theory of such streaming motion can probably be 
dated back to Faraday (1831) and Rayleigh (1883), who studied the steady 
motions caused by vibrating plates. Since the translatory oscillations of a fluid 
past an object are an approximation to sound waves whose wavelength is very 
large compared with the dimensions of the object, this topic is very important in 
the field of acoustics. Many papers have been written in this century on the steady 
streaming (acoustic streaming) caused by an oscillatory viscous flow. References 
to early literature were cited by Westervelt (1953) and Nyborg (1953). 

The more important theoretical treatments of acoustic streaming are probably 
those due to Schlichting (1932) and Holtsmark et al. (1954). Recently the problem 
was again discussed by Stuart (1966). From the usual concepts of boundary- 
layer theory Stuart showed that, for high Reynolds numbers, in addition to the 
unsteady boundary layer there exists a second boundary layer in which the 
steady streaming decays to zero. 

However, many points remain to be answered. In  this paper we shall re- 
examine the equations governing oscillatory viscous flows. The assumptions we 
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shall make are that the reduced frequency of oscillation is large and that the fluid 
is incompressible. 

We shall fix our co-ordinates on the solid body, and regard the fluid as oscil- 
lating. The problem is then completely governed by two parameters: a Reynolds 
number R characterizing viscosity and a Strouhal number S characterizing 
frequency. These are defined as follows : 

R = U,l/v, S = h /UOc .  

Here U, is the velocity amplitude of the oscillating fluid at  infinity, 1 is a charac- 
teristic length of the body (the radius of a cylinder if X is to be interpreted as the 
ratio of the oscillation amplitude to the diameter) w is the frequency of oscillation 
and v is kinematic viscosity. 

2. The governing equations 
It will be convenient to eliminate pressure and write the unsteady Navier- 

Stokes equations in terms of vorticity: 

_-  V x q ’ x < ’ =  - v V x V x < ’ ,  
at 

V . q ’  = 0. 

Here the vorticity is defined as <’ = (V x q‘). Before a comparison of magni- 
tudes of the terms can be made, we must separate the steady part of each variable 
from its unsteady part. (This can be done by differentiating and then integrating 
with respect to time.) Denoting the steady part by a bar and the unsteady part by 
a tilde, and assuming each variable is the sum of the above two parts, we have 

v x ij‘ x 5I-V x Q’ x <’-(V x 4’ x “), = - v v  x v x <’, (2.3) 
at’ 
at 
_ _  

v.  Q’ = 0, (2.4) 

(2.5) 

v.  9’ = 0. (2 .6 )  

(V x Q ’ X  <’),+V x q ’ x  %‘ = v v  x v x t’, 

Here ( ), and ( ), denote the unsteady part and the steady part of the product, 
respectively. The interactions between the unsteady flow and the steady flow 
can be seen a t  once from (2.3) and (2.5). The term (V x tj’ x c’), is associated with 
the steady part of the Reynolds stress. In non-periodic unsteady flows, this term 
is zero. For periodic unsteady flow this term becomes the forcing function for the 
steady streaming motion. 

The boundary conditions are that the velocities approach a prescribed 
oscillatory flow at infinity and that the velocities are zero on the solid surface. 

Since we have purely oscillatory boundary conditions, we do not know apriori 
what order of magnitude is the steady streaming velocity. Let us denote an 
unknown y as the ratio between order of magnitude of the steady velocity to that 
of the unsieady velocity. Then we normalize the unsteady velocity by U,, the 
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steady velocity by yU,, the time by l/w, the length by 1 and drop the primes. 
We obtain 

1 1 " --- 'I' (v x 4 x (+ox 4 x <)--  (V x a x c), = -- (v x v x c) ,  (2.7) at x S RS 

0.p = 0) (2.8) 
(2.9) 

0.q = 0, (2.10) 
(V x p x c,,+ y2(V x q x 5 )  = ( y / R )  (V x v x t), 

and the unprimed variables are of order unity. 
In  (2.7), if RS 6 O ( l ) ,  the unsteady vorticity 5 would not be confined in a 

boundary layer but would be spread all over the flow field. Then from (2.9) the 
forcing term (V x li x (), is also important in the entire region. To balance this 
term, the ratio y in the last term of (2.9) should be of order O(R). In  this case no 
boundary layer exists. For large values o f 8  the equations of motion reduce to 

€2 
(0 x v x 5)  = (V x p x t), + 2 (V x q x <), (2.12) 

where R =g 1, e = l / X  < 1 and a = 1/RX is a constant of order unity. The zeroth- 
order perturbation of (2.1 1)  and (2.12) is essentially the theoretical formulation 
adopted by Rayleigh (1883), Holtsmark et nl. (1954) and Lane (1955). For 
cylinders and spheres, the solutions involve Hankel functions which must be 
integrated numerically. One must, however, consider the interaction terms which 
affect the O(e2) unsteady vorticity equation in (2.11). 

Let us consider the case when (RX) > O(1).  Equation (2.7) then shows an 
unsteady boundary layer of O(RX)-& exists, which implies that the unsteady 
vorticity decays exponentially outside this boundary layer. The forcing term of 
the steady flow (V x 4 x g), is also negligible outside the distance (RS)-4. In  order 
to balance this force inside this distance, y must be equal to (118). Equation (2.9) 

then becomes 1 1 
(V x 4 x c),+sg (V x q x %) = - (V x v x 5,. RS 

Outside the distance (RX)-h  equation (2.13) is replaced by 

1 1 
8 2  - ( V x q x < )  = - (VXVX%) .  RS 

(2.13) 

(2.14) 

The boundary condition on (2.14) is that the velocityq on the body matches a 
non-zero steady velocity produced by the unsteady Reynolds stress. We can see 
from (2.14) that a 'second boundary layer' exists or not depending on the para- 
meter R/S = U",jov. This parameter is called steady streaming Reynolds number 
R, by Stuart (1966). If R/S < O( 1) the outer steady flow field is governed by the 
Stokes equation. If RIX > O( l ) ,  a 'second' boundary layer exists. The vorticity 
then decays exponentially outside the steady boundary layer of O(R/X)-*. The 
steady velocity, if any, is potential outside this boundary layer. On the other 
hand, if R/S = O( 1) we must take into account the vorticity transport. Then the 
steady streaming is governed by the full Navier-Stokes equations. 
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The importance of curvature terms in (2.13) is of order (RE)-&. Thus the 
curvature effects become important when O(R)  < O(X). This has been pointed 
out by Wang (1966) in reference to Schlichting's (1932) theory. Schlichting used 
the Stokes formulation for the outer steady streaming. If the curvature terms 

".,,,iIllPresent theory on oscillatin cylinder 
3x erirnents of Andrade (1 6 31) 1111 
11111111 Ti lllllllllllllHoltsrnark et al. (1954) 

boundary layer) 

FIGURE 1. The regimes of validity of various theories and experiments. 

were retained, Schlichting's theory should be valid for RIS < 1 or very small R, 
compared to unity in Stuart's notation. Wang (1965) also studied the case 
O(R) = O(S) for a sphere. However, the outer steady streaming was done 
incorrectly. This outer flow should be governed by the full Navier-Stokes 
equations. 

Experiments in the range RX 9 1 and R/X << 1 have been done by Andrade 
(1931) for a sphere (8 N 100, R N 5)' and by Holtsmark et aZ. (1954) for a cylinder 
(typical case: (8 N_ 17.25, R = 5-81)) .  

The case RS 9 1, RIX 9 1 was considered theoretically by Stuart (1966) and 
Riley (1965). Stuart used Fettis' (1955) method to calculate the steady outer 
boundary layer. He especially referred to Schlichting's (1932) experiments 
(RS = 4250, R/S = 53.7). Riley used an 'inner and outer expansions' method. 
Both Stuart and Riley expanded the boundary-layer solutions from a steady 
stagnation point 

The regimes of validity of various theories and experiments are shown in 
figure 1.  

from the unsteady stagnatioll point. 
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One must also mention the related problem of the infinite oscillating disk by 
Rosenblat (1959) and Benney (1964). Since there are no natural length scales, 
theoretically this solution is valid for all Reynolds numbers. The governing 
equations are similar to that obtained by taking Reynolds number equal to 
unity. Thus from the above arguments the outer steady streaming should be 
governed by the Stokes equation. Physically, as no disk is infinite, the solution is 
only valid in a small region near the axis and the finite disk. Outside the region 
of the infinite disk solution, convection becomes important and the Stokes 
equation is inadequate to describe the flow at high Reynolds numbers. Therefore 
for a jni te  disk there may exist another layer where convection is important. 

3. Oscillating circular cylinder at low Reynolds number and large 

To illustrate, take the oscillating circular cylinder in an otherwise still fluid. 
We shall restrict ourselves to small Reynolds numbers such that RS 9 1, 
RIS -g 1, where some careful experiments have been done. 

Curvature effects, represented through the Reynolds number, enter as an 
important factor. There are two direct consequences due to finite curvature. 
First, the slope of the original outer oscillating flow affects the next-order solution. 
Secondly, the induced outer flow due to displacement has a tangential component 
of the velocity, which in turn creates its own boundary layer. These will be 
illustrated in this example. 

When the problem involves two parameters, it is advisable to expand in one 
while assuming some proportional relationship with the other. For our problem, 
we define 

Strouhal number 

11s = €2, (3.1) 

RIS = O(s2) ,  (3.2) 

or RIS = $/a, (3.3) 

where E is a small number and a is a constant of order unity. From previous 
arguments y = 11s and the governing equations, in cylindrical polar co-ordinates 
fixed on the cylinder, become 

where @ is the streamfunction and 

Using the method of inner and outer expansions, we perturb the vorticity and 
the streamfunction as follows: 

(3-7) 

(3.8) 
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Substituting into (3.4), we find the unsteady vorticity is identically zero until 

(3.9) 

O(e4), where the interactions come into play: 
_ - *  xo = 21 = z2 = z3 = 0, 

(3.10) 

From (3.6) the steady vorticity is governed by the Stokes equation for the first 

(3.11) 
few orders until O(e2): 

v22, = v22, = 0, 

(3.12) 

The equations for the inner flow field are obtained by stretching in the radial 
direction as follows: r = 1 +saBv, (3.13) 

$ = e($,+€$l+€2$2+ ...). (3.14) 
The equations are 

(3.15) 

(3.16) 

etc. The boundary conditions are that the velocities are zero on the cylinder 
described by r = 1 and that the velocities approach a uniform oscillation at 
infinity: TolP=m = rsinBeit, (3.19) 

Yn[P=m = 0 (n+O), (3.20) 

where it is understood that only the real part has any physical significance. We 
shall first solve for the unsteady flow. From (3.9), (3.19) and (3.15) we have 

(3.21) 

$o = 2 at sin 8 [ 7 + 5 ( E  - 1) 1 eit , (3.22) 

where E stands for e-T(1+i)/d2. From the matching condition 

lim (To+ e q l  + c 2 q 2  + . . .) matches lim E($, + E $ ~  + . ..), (3.23) 

we obtain Tllr=l = (i- 1)  (2a)BsinOeit. (3.24) 

The solution to (3.9), using the boundary conditions of (3.20) and (3.24), is a 

(3.25) 
doublet : sin0 . 

P-tl ?I dm 

!Pl = -pa )  S ( 1  -i) __ ett. 
r 
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This doublet is due to the oscillating displacement thickness of the unsteady 
boundary layer. To an observer at infinity, the cylinder seems to be pulsating 
with the same frequency as the oscillating flow. Notice that (3.25) introduces a 
non-zero tangential velocity component which is to be matched with the inner 
solution These curvature effects are very important. 

The solution to (3.16) is 

I -72+ , /2 (1 - i )7+ i - iE- - - - -7E  ( 1 - i )  eit. 

4 2  
(3.26) 

The second-order induced outer flow is again an oscillating doublet which will 
influence the second-order boundary layer 

(3.27) 

To calculate the non-linear Reynolds stress terms in (3.17) we must do the 
multiplication in the real physical domain, then return to complex variables: 

(3.28) 

(3.29) 

From (3.17) the second-order inner solution is found to be 

We see that the non-linear transport terms enter in the second-order unsteady 
equations. The displacement of (3.30) not only introduces a doublet oscillating 
with the basic frequency, but also a quadrupole oscillating with twice the basic 

(3.31) 

Notice that to this order we can solve independently for the unsteady flow 
field. The interaction of the steady flow field has not entered yet. To find the 
steady flow, we use a similar procedure outlined above and, from (3.18)and (3.29)) 

Equation (3.32) shows that there exists a finite tangential velocity of 
(-:sin 20) outside the boundary layer. From (3.11) the outer steady flow is 
governed by the Stokes equations. The solution after matching is 

(3.33) 
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Since the forcing function decays exponentially outside the boundary layer, 
To represents the fluid being ‘dragged along’ by the velocity just outside the 
boundary layer. Of different nature is the flow Tl which is induced by the 
displacement of the steady boundary layer 

(3.34) 

P, of course produces its own boundary layer. The method is systematic and we 
shall not pursue it further. 

Uniformly valid solutions of the entire region for the unsteady flow and the 
steady flow (of order y or order l/S smaller) are constructed: 

sin0 . 1 - i  
- (RE)-& 2/2( 1 - i )  ~ ezt - (RS)-l sin 8 iE + ~ 11.1 eit 

r [ 42 

+ R-gSf sin 20 {+( 1 + i )  [E-\/2- 13 + iyE} eZit + O(S-2), (3.35) 

@ = X-12 sin 20 - - 1 + R-BS-3 

1 13 1 

[ 2 4 2  2 J2 

1 - 

xsin28 - - - - - ee - - \ / 27 -2 /2 (3+2 i )E  +O(AY-~). (3.36) 

The unsteady part of the streamfunction, (3.35), is dependent onboth R and S. 
The first term on the right-hand side is the prescribed oscillatory flow. The other 
terms are due to the viscous interactions with the body. Multiples of the basic 
harmonic are present in the higher orders. Outside the boundary layer there 
exist induced oscillatory flows, represented by doublets and quadrupoles. The 
steady part, (3.36), is plottedin figure 2 for R = 1 and S = 100. Cells of recircula- 
tion exist symmetrically in each quadrant. This is consistent with experimental 
observations. Taking (3.36) to zero, we find that to order S-2 the position of the 
zeroth streamline depends only on the parameter RS. In figure 3 the thickness of 
the recirculating flow A is plotted against RS. The result is fairly good compared 
with direct observations (here normalized and replotted) by Holtsmark et ul. 
(1954). Also shown in figure 3 is the theory by Holtsmark et al. obtained by a semi- 
numerical integration of Hankel functions. One must remark that, if solutions 
to (2.11) and (2.12) were expanded correctly, Holtsmark’s work should include the 
present case. 

The drag experienced by a circular cylinder in an oscillating stream can be 
found by integrating the pressure and the shear. The drag coefficient due to 
Dressure is 
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The drag coefficient due to shear is: 

The first term in the right-hand side of (3.37) represents the drag due to the 
inviscid, potential flow To. In  the case of an oscillating cylinder in an otherwise 
still fluid, this term becomes half the present value and can be identified as the 
drag caused by the 'virtual mass' of the cylinder. The other terms in (3.37) and 
(3.38) are due to viscous interactions with curvature. Notice that in our problem 
the pressure drag dominates. 

FIGURE 2. The steady streaming caused by an oscillating circular cylinder, 
R = 1, S = 100. 

1 I 

0 1000 2000 
(S/R) 

FIGURE 3. The thickness of recirculating cells versus the parameter (SR). 0, experiment 
(Holtsmark et al. 1954) ; - -- seminumerical theory (Holtsmark et al. 1954) ; -, 
present theory. 
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The total drag experienced by an oscillating circular cylinder in an otherwise 
still fluid is then 

277 . 77 i - 1  . 
C =  Cg+Ci =Xmie i t+  2,/277(1+i)eit+-eeZ1+-- R R(RS)g 2 42 ezt + O(X-l). 

(3.39) 

It is interesting to note that the steady streaming, due to symmetry, does not 
contribute to drag. The energy for such streaming is embedded in the interaction 
terms in the O(c4) equations. 

We must emphasize that the drag due to pressure, excluding that due to virtual 
mass, constitutes an important part of the total drag. This pressure drag can 
only be found from the induced outer flow obtained by asymptotic matching. 

Riley (1966) also considered the oscillation of a sphere in the range RS 1,  
R/X < 1. Following Schlichting (1932), he neglected the curvature terms which 
are very important in this case. Therefore, like Schlichting's work, the inner 
solution is valid for R/X > O( 1) but not for R/X < U( 1) .  This point is also discussed 
by Wang (1966). The zeroth-order outer steady flow, however, is not affected 
by curvature. 

4. Oscillating flow at a stagnation point 
As another example, we shall take the high-frequency oscillatory flow towards 

an infinite plane. The purpose of this example is threefold. First, since oscillatory 
flow parallel to a plane does not produce steady streaming, we believe that 
oscillatory stagnation flow towards a plane is more probable as a basic mechanism 
for steady streaming. Secondly, the geometry is very much simplified, and the 
solution can be found to higher orders, where we can investigate the interactions 
between the steady flow and the unsteady flow more closely. Thirdly, some 
difficulties associated with the infinite geometry are illustrated. 

As in the case of the infinite oscillating disk, there are no natural length scales. 
Theoretically the solution is valid for all Reynolds numbers, mathematically the 
equations are similar to that obtained by taking Reynolds number unity and 
physically the solution is valid only in a small region near the stagnation point. 

In  two-dimensional oscillating stagnation-point flow the velocities at  infinity 
are prescribed as 0 = ux cos wt, P = - uy cos wt. The flow is bounded by the plane 
y = 0. The explicit effects of curvature (and thus the Reynolds number) do not 
enter. If we normalize the velocities by (uv)-k, time by l / w ,  and lengths by (v/u)*, 
the governing equations become 

which are similar to (3.4) and (3.5) if we take a = 1. We have defined for con- 
venience e2 = l / X  = ajw. The boundary conditions are that the velocities be zero 
on y = 0 and that the velocities approach (and be no more singular than) 

D = x eit, (4.3) 
V = - y eit, (4.4) 
- 
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at infinity (this point will be discussed later). Using a similar method as in the 
previous section, the equations governing the inner unsteady flow are 

(4.5) 

(4.7) 

For the inner steady flow the equations are: 

(4.10) 

(4.11) 

(4.12) 

where y = €7. Using the method of inner and outer expansions, we have to solve 
alternatively for the unsteady flow and the steady streaming. The interactions 
are clearly shown in the above equations. 

Without going into the details, the results are: 

?Po = xyeit, (4.13) 

J1 = \1p2 = 0, 

(1  + i) eZit T3=- x, 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

?p3 = 9, = 0, (4.19) 

po = (4.20) 

5 Fluid Mech. 32 
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0 -  4 Y )  

- yp --ax 

13 
TI = V 2 X '  

(4.21) 

(4.22) 

(4.23) 

(4.24) 

etc., where 

(4.26) 

and E* is the complex conjugate of E .  
The outer induced flows are governed by (3 .9)  and (3.1 1) .  We have prescribed 

for the boundary conditions at infinity that the solution be no more singular than 
the original oscillatory flow, and we have used the least singular solution. There 
is a certain degree of non-uniqueness to the outer solution because of the infinite 
geometry. This difficulty can be resolved by taking an initial-value problem (start 
oscillating from rest) and taking the time limit, or by taking a finite body and 
letting the radius of curvature approach infinity. Using a limiting process on the 
results of the oscillating cylinder obtained in the previous section, one can show 
that to the order considered, O(AS-~), the least singular solution i s  the correct 
solution. 

Uniformly valid composite solutions are constructed for the oscillatory flow 
towards a stagnation point: 

The steady streaming is caused by the steady component of the Reynolds 
stress. The two terms in (4.28) adequately describe the flow up to O(8-8). The 
steady streamfunction for S = 100 is plotted in figure 4. We see that a layer of 
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reverse flow always exists near the solid boundary. Also shown in the figure in 
dashed lines is the forcing function (Reynolds stress and pressure gradient) which 
drives this steady flow. The existence of a reverse flow is due to the fact that near 
the solid surface the Reynolds stress is negligible and the pressure gradient 
dominates. The thickness of the reverse flow decreases with increasing frequency 
of oscillation. Outside the boundary layer the forcing function decays to zero and 
the fluid is being dragged along by the non-zero velocity created in the boundary 
layer. 

Forcing 
[function 

L I 
// //////// / // / , 

-0.5 
/ // / //// //// /////// 

0.5 PO 
FIGURE 4. The steady streaming caused by an oscillatory flow towards a 

flat plate, X = 100. 

5. Conclusions 
In  studying oscillatory viscous flows, the importance of separating the steady 

part and the unsteady part of the governing equations cannot be over-emphasized. 
Aside from a determination of the order of magnitude of steady streaming, this 
method has the advantages of showing precisely when interactions should be 
considered, and also providing a governing equation for the outer steady flow. 
The difficulties encountered in many previous investigations can partially be 
resolved. 

By restricting ourselves to high-frequency oscillations, we are able to obtain 
uniformly valid analytic solutions. This is because the flow is primarily diffusive 
and the troublesome non-linear terms appear only as a forcing function. The 
procedure is further simplified by the use of the method of inner and outer 
expansions. 

The effects of curvature are found to be very important in the case of an 
oscillating circular cylinder at low Reynolds number and high frequency. The 

5-2 
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interactions between the boundary layer and the outer flow field cannot be 
neglected. Only from the attenuation of the outer flow can one find the correct 
pressure drag. 

The oscillating flow at a stagnation point is investigated. The solutions are 
valid for all Reynolds numbers in a region very near the stagnation point of the 
unsteady flow. We find that, as the Reynolds stress forces a steady streaming 
towards the stagnation point, the pressure gradient acts in the opposite direction, 
causing reverse flows or cells near the solid boundary. 

The author wishes to thank P.G.Saffman and J.D.Cole for their helpful 
discussions. This research is supported by the National Science Foundation under 
Grant no. GP 6655. 
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